“AD-A182 583 TOHMD l PERSISTENT OOJECT DRSE(U) CARMNEGIE-MELLON WIV Ii AN
PITTSBURGH PR SOFTWARE ENGINEERING INST J R NESTOR ~ 4
JUL 86 CHU/SEI-OG-TH 8 ESD-TR-86-213 F19‘20-05-C-m3

L J
\\
¢\~\¢
AR,
WA .
Wiarto

>
'.-
.

L
¥
-I‘\ ! -\."\V'
) * &
N ',\)
* W
N)

v

"

I\
\AY
\ﬂ

-
)
'\'. o
~ \"::'::"'
AT
1) R

o,
o,
()

=R E R
& EEF] l—
| B2d3400.8
'

+ S “§ 5
o ’
e

' d
*
-
X

o %
‘P
e
.\‘."

.
.
~

N
-
>

ot
LA L

~w
o,

W0 At b e LA, bt e Pt M Bt Wt g e e 08 LN 18 o s a8 0Bt A e s A s B e 0B BB L8 g8 ah pb gl 8 e 8%, B0t 2t s WAt p gt p iy Bt w L g

e FILE. CU - 5

P

Technical Memorandum . 0
CMU/SEL-86-TM-8 .

=— N
" o

Carnegie-Mellon University
—== Software Engineering Institute p

i

.-
2 _A

Toward a Persistent Object Base

A A

- J
=

v & - sy

4 S5 Y

BN \ July 1886 | DT' C

ELECTE
S JuL29 qu

e

™M
0
(o)
N
0 by
- John R. Nestor
T
0
<

e “.'.“gﬂir
PR LA AL,

«
3

'l

Ll ol g4

S')\‘I‘n‘a"\

Approved for public release)

DISTRIBUTION STATEMENT A |
Distribution Unlimited ««»‘J

“I(l".

e E .
o /‘r’ ‘i' '/ 'l' "’.

.

MRS NN A |
® s 4 e s e a
L I]

KRR

¢
| 4

l’-

L
7

-
. 3

S
¢

PARORAAL

¢

* 8¢ ¢ .Y

e o CURIT RN R s, . AT .)v-,,—f,-(.fv-rr- LS RN N) LN
NI IR Al S A A A A P R A T PRl AP ATINT | TN N T NN CATIN A TR Y -';-f.,f--".

'(" Dy
BV A

Technical Memorandum
SEI86-TM-8
July 1986

Toward a Persistent Object Base

by

John R. Nestor
Software Engineering Institute

Gecesion For !
NTIS CRI«';l é N
Approved for Public Release. Distribution Unlimited. LTIC TAQ 03
U annared]
Jostibicsiog . .
Dt haton :
r—_.--.- ft it e et s s e - ——-
Aadiabd oty Crdong
P—— _f B [T =y
Dit | " Q‘ Ly !
’ |
A-1|
This work was sponsored by the Department of Defense. T T e

The views and conclusions in this document are those of the author and should not be interpreted
as representing official policies, either expressed or implied, of the Software Engineering Institute,
Carnegie-Mellon University, the Department of Defense, or the U.S. Government

VY PR T %

B

Toward a Persistent Object Base

John R. Nestor

ABSTRACT To better understand the needs of future programming environments, two current
technologies that support persistant data in programming environments are considered: file sys-
tems and data base systems. This paper presents a set of weaknesses present in these current
technologies. These weaknesses can be viewed as a checklist of issues 10 be considered when
evaluating or designing programming environments.

{ 1 Introduction

\

\

\'> Every programming environment must support not only transient data that is used during com-
putation but also support persistent data that is kept over some period of time. Two widely used
current technologies support persistent data: file systems and database systems. There is in-
creasing recognition that neither of these technologies alone will provide an adequate basis for
the next generation of programming environments. Most new environment efforts are moving
toward a more object oriented appro;gn_maug a synthesis of ideas from file systems and
databases. §gmglexanples are CAIS {D4€85), the ESPRIT Portable Common Tool Environ-
meni{ESRAIF-85, the Common Lisp Framewor{CLF 85}, 8nd Arcadia [Taylor 86]. This next
generation of technology will be referred to as persistent ob]eiba-u;s)

—— T e e o e

" To better understand the nature of the technology needed by future programming environments,
this paper considers the weaknesses that will have to be eliminated in traditional file systems and
database systems to create a first class persistent object base. Section 2 sets the context for
later sections by discussing the character and needs of future programming envionments. Sec-
tions 3 and 4 cover, respectively, the weaknesses of traditional file systems and database tech-
nologies. Section § presents conclusions. [/., . A ¢ JaTs 2o / oy

ﬂ . AN
2 Context

Modem software technologies allow software engineers to automate many of the processes that
are often implemented by inefficient manual or semi-automatic procedures. Such improvements
increase our expectations, leading to larger software projects. Larger projects, in tum, require
improved communications among managers, users, designers, and maintainers of such projects.

As the software to be produced grows in size and complexity and the communication require-
ments increase In scope, the tools required to develop and support such software must become
more powerful, and the computational system to support the software tools must grow propor-
tionately in scope. In place of a single batch or time sharing machine, increasing emphasis is
being placed on use of workstations, distributed computation, and networks to integrate

T O e BN T R Y N R

previously separate computer systems into a single vast communication and computational sys-
tem. Not only must the hardware evolve, but the environment itself must be developed,
upgraded, and enhanced over a lifetime of many years.

Programming environments have become a focal point for much of the work directed toward
improving the practice of software engineering. Such environments provide support for software
development, management, and maintenance. There are some primitive programming environ-
ments already available; there are many next generation environments currently being designed,
and work on environments will be a major technical thrust of software engineering for many years
to come. There are two top level design goals that will make future environments successtul:
openness and integration.

Openness refers to the ability to incorporate tools, methodologies, and technologies into the
environment as needs and opportunities arise. For an environment to be open, it must provide a
set of interfaces that permit new features and tools to be easily inserted. The degree to which an
environment can be extended to support a wide variety of new tools and methodologies is one
measure of the degree to which that environment can be considered to be open. Openness can
also be enhanced by the way in which the interfaces are made available; public availability (as
opposed to proprietary control), quality documentation, ease of use, acceptable performance,
stability, portability, and standardization can all contribute to the openness, in actual practice, of
an environment.

inmegration means that the components of the environment work together through a uniform
interface, style of operation, and communication medium. The cooperation of the components
allows for better use of information sharing, resulting in an intelligent environment.

Though openness and integration are important fo software development environments, most
systems to date have emphasized openness over integration, or vice versa: There are few exist-
ing examples of systems that achieve both. Nevertheless, this tension can be resolved in a way
that will enable both goals to be achieved; the key lies largely in the design of the infrastructure of
the environment, the kernel parts on which all other tools, features, and methodology support are
built. if the infrastructure is not properly designed, increasing complexity of our environments and
the systems they are used to construct will make quality increasingly difficult to achieve.

In earfier systems, the infrastructure was provided mainly by the operating system, in which the
primary concemn was resource allocation and scheduling. As a resuflt of improved hardware
technology, new software engineering tools, evolving views of the software development process,
and ever increasing expectations, a shift of emphasis has occurred in our view of the role of the
infrastructure.

Persistent object bases are a key part of the infrastructure of future programming environments.
Providing a high-quality persistent object base is a necessary, athough not sufficient, condttion
for achieving the full potential of future programming environments.

.
IRRERT ¥
a_A& 8 _ &

.......
.....................

RIORAON. SUCATOUURN

.
B ma

3 Weaknesses of Traditional File Systems

This section considers five areas where traditional file systems are inadequate for persistent
object bases: organization, abstraction, history, attributes, and synchronization. Unix! [Ritchie
74] is used here as an example of a traditional file system. Other traditional file systems differ in
their d_etalls from the Unix file system but display essentially similar weaknesses.

3.1 Organization

The Unix file system is organized as a tree of files, each of which is either a directory or an
ordinary file.2 Within the tree, directories appear as inner nodes and files appear as leaf nodes.
The root of the tree is a unique directory from which all directories and files can be reached.
Each directory is a mapping between file names and the files themselves. Each file has a unique
path name given by the path from the root directory to the file. For example, the path name
/usz/bin/man is for a file named man that is reached from the root directory via first the usx
directory, then via the bin directory.

One problem with a tree structured file system is that the user is forced to represent a system in a
way that does not reflect the structure of the data in the system. A related problem is that as a
system evolves the user periodically must do major reorganizations of the data within the file
system. These reorganizations are needed because the preexisting hierarchical structure in-
creasingly deviates from the actual logical relationships.

Consider, for example, a system being built as part of some project called Q_Development. A
directory is built for the project.

/projects/Q Development

Initially, all files for the project are placed in that directory. Soon the number of files in that
directory has grown 1o where more structure is needed. Suppose that both documentation files
and program files exist. To provide more structure, two new directories are created.

/projects/Q_Development/documentation
/projects/Q_Development /program

All of the files are moved into one or the other of these two directories. Not only is there the extra
work involved In moving the files into the two new subdirectories, but any shell scripts that

. referred to Q_Development must now be changed to refer to one or the other or both of the two
new subdirectories. For a persistent object base, no moves should be required and existing shell
scripts should remain unchanged. Additional information would be added on top of the existing
structure.

YUnix s & rademark of ATAT.
2There are also special fles and links that for simplicity are not discussed here.

Consider next that & is time to release the Q system 10 users. Users should have the Q ex-
ecutabile file and the Q user manual, but not the Q source code or the Q internal documentation.
These files are a subset of the files in the two subdirectories. Since users should not have to
know about the substructure of the Q project directories and be confused by all those other files
that dont matter to them, a new directory is created 10 hoki coples of the files that the users will
need.3

/release/Q

Moving files was bad enough, but in this case there are actually two coples of the same files.4 For
a persistent object base, information would be added, but files would not be moved or copied.

Finally, consider that & is time to produce a new version of the Q system while leaving the
previous version of Q around. To do this, the directories must be spliit.
/projects/Q Development/documentation/V1
/projects/Q_Development/documentation/v2
/projects/Q_Development/program/v1
/projects/Q Development/program/vV2
/release/Q/V1
/release/Q/V2

Here all the old files are moved into the v1 directories. The v2 directories will be used for the
new version of the system. A simple way to do this Is 10 start by copying afl the V1 files into v2.
Work on the new version then can be done by changing the v2 file while leaving the vi files
intact.5 Furthermore, when versions were introduced, why wasn't the directory tree split in one of
the following ways?

/projects/Q Developmant/Vl1/documentation
/projects/Q_Development /V1/program
/projects/Q_Development/V2/documentation
/projects/Q _Development /V2/program
/zelease/Q/V1

/zelease/Q/vV2

/V1/pzrojects/Q Development /documentation
/V1/projects/Q_Development/program
/Vv1/zelease/Q

/V2/projects/Q Development/documentation
/v2/projects/Q_Development/program
/V2/release/Q

341 isast in some fle systems symboliic links could be used 10 avoid the copy. In Unix, howsver, hard links can only be
made between a directory and a file on the same physical volume. Symbolic links can cross volumes but result in an
ssymmetical specification of a symmetrical shuation.

4A well known sofware engineering “rule” states that when here are two identical copies of the same file at least one of
them is different!

SSome flle systems provide a search list mechanism where the V2 directories are inifially empty and a search list is set
that searches first 2 then V1. Any ime a fie not in V2 must be changed it is first copied into V2. This is again sortof a
solustion but is tedious, confusing, and error prone.

The answer is that that there is no strong reason to prefer one of these structures over the others.
in a persistent object base, all three of these forms should be indistinguishable.

3.2 Abstraction

Unix starts with the assumption that all fles exist on the same physical volume (typically a disk).
in order to deal with muttiple physical volumes, Unix has a mount command. The mount com-
mand has two arguments: an existing directory and a new volume that itself hoids a file system
consisting of a tree of directories and ordinary files. A mount causes the file tree on the new
volume 1o be “pasted” into the file tree in place of the specified existing directory. The net effect
is that there is a strong coupling between the path name of a file and its physical location. As
Unix has come to be used in distributed networks, several network file systems have been
proposed, including Apolio DOMAIN [Leach 83), Sun NFS [Sandberg 85], and AT&T RFS [Hatch
85]. iIn all of these systems, the path name is coupled o the physical placement within the
network.

Modern data abstraction [Shaw 84] shows that considerable benefits can be achieved by separat-
ing the logical structure of data from iks representation. As can be seen above, the Unix file
system blurs together the logical concept of path hame with the representational concept of
physical location. Representational properties frequently influence the logical structure of data.
Since physical volumes have a finite maximum data gize, the number of files within the subtree
for a volume is constrained. When the data size exceeds the physical space, the user is forced
into modifying the logical structure. In networks, data on a local disk is often faster to access than
data on a remote node. By changing the physical placement of data within the network, and
therefore s logical structure, a user can get faster file access. In both these cases, the user who
wants to deal with the logical structure of the data frequently spends considerable time also
. dealing with the physical constraints of the file system,

The Unix file system does not support flexible physical representations. For example, there is no
way in Unix to transparently store a file in a compressed format using text compression [Welch
84) or as a data relative to some related file [Rochkind 75, Katz 84). This kind of transparency
would eliminate the user burden of explicitly invoking a decompressing program before each use

of the compressed file.

Another kind of flexible representation Is the use of muRiple cached copies of the same file
[Schroeder 85). Within Unix, caching can be provided only by modifying the Unix kemel.

in a persistent object base, data abstraction should be practiced so that fogical concepts are
decoupled from physical representations; richer representations should be possible by providing
the ability to program the implementation of file abstractions. The Apollo extensble streams
mechanism [Apolio 86] is an exampie of such a data abstraction mechanism grafted on top of a
Unix file system.

Byt

- o = -

"

5
-

A ALY

SRR A RIS £,

5 %y

TR R ALAY CYCREL L O SONR AR L0/ oL TR EANALAS o 05 G0N

3.3 History

Two related history concepts are considered here: source versions and re-creation.

Every time a source file Is edited, logically a new version is created, so that over time a linear
sequence of versions is created. When altematives occur, such as when a bug is fixed in an old
release while work continues on the next release, the sequence can fork, and when alternatives
come together separate sequences can join. Abstractly, a directed acyclic version graph is
formed. Not all points in the version graph are equally important; in practice, users impose
additional structure at one or more levels of granularity and do not preserve versions below some
minimum level of granularity. The finest granularity corresponds fo every edit. A coarse
granularity would be at major release points. Intermediate granularities are frequently defined to
aid the management of a development project. The concept of versions can be usefully extended
to muttiple related source files which may be considered to be progressing in parallel along a
version graph.

One common way of handling source versions is through the use of naming conventions: either at
the directory or the file level. Eariier in this paper, directory naming conventions were used as a
way of representing versions of related sets of files. For example, the two directories below
would hold all the Q system source files associated with each of the two versions.

projects/Q Development/vV1
projects/Q Development/v2

A method for dealing with individual source files is use of a generation mechanism. Although
Unix provides no special generation mechanism, the same effect can be realized by file naming
conventions. For example, two versions of the same file could be named using a version exten-
sion.

/projects/Q_Development/Q Control.ada.Vi
/projects/Q Development/Q Control.ada.V2 y

One disadvantage of this approach is that all shell scripts need to be aware of the generation
naming conventions, and any v1 shell script needs to be edited before # can be used for v2.6
When using conventions for representing version relationships, the entire burden for ensuring
- consistency rests with the user. Although a convention for representing linear version relation-
ships is obvious, conventions representing forks and joins in the version graph are less clear.

A more sophisticated source version system is provided by the Unix SCCS tool and by a similar A
but improved too! RCS [Tichy 82]. SCCS keeps track of all the versions of a single source file. R
provides support for both forks and joins.” The SCCS implementation holds all versions of a
source file in a single file called the s-file. Before any use of a particular version of that source
can occur, it must be extracted explicitly from the s-file. Typically, shell scripts will contain calls to

®The edit could be avoided by passing the version as a string parameter which is then concatenated 1 all file names.
The SCCS documentation suggests that forks be kept 10 a minimum 1 avoid structural complexity.

S 08 L SOV L NN S

RN A

............

SCCS for this purpose. The big disadvantage of SCCS is that i is an ad hoc data encoding
scheme implemented on top of the file system, rather than as part of k. In addition to its logical \
properties, SCCS also uses the representational method of source deltas to encode the versions.)

This is yet another example of how logical properties and physical representation have been
blurred together.

in a persistent object base, SCCS functionality would be provided in a transparently integrated
manner. Versions and data compression would be handied by orthogonal mechanisms.2 The X
DSEE system [Leblang 85] is one current example of how this could be done. -

Re-creation Is the abiilty to be able to go back to an old version of a system and repeat all of the
steps that were involved in iks creation. Re-creation implies that all information about system
creation is captured. Traditionally, a lot of the system creation information was held only in the
heads of the development team, making re-creatien difficult. Re-creation is important for two
major reasons. First, ¥ a system is re-creatable, important structural relationships between the
files of the system are captured. System maintainers can use the relationships directly and use
support tools that depend upon having the relationships available. Second, if an old version of a
system has a bug, re-creation means that a minor variation of k can be constructed in which the
bug is fixed. To better understand re-creation, the concept of a derivation graph is used. Deriva-
tion graphs were used in Toolpack [Osterweil 83]. The definition used here is a somewhat
simpiitied form of the model presented in [Borison 86).

Those files that make up a system can be divided into primitive and derived files. A primitive file
is ekher a source file of the system or some file from outside the system that is used in its
construction. A derivation step consists of an invocation that accesses a set of input files to
produce a set of output files. The invocation includes a ool consisting of an "executable" file and
a set of actual parameters to that tool, which could be elther constants or files (or their names). It
is assumed that the output files depend only upon the input files and the invocation invoived in
the derivation step.® Derived files are those that are output of some derivation step. The inputs of
a derivation step and the file holding the tool being run in the derivation step must be either
primitive files or output files of some earlier derivation step. The combination of all the derivation
steps for a system Is its directed acyclic derivation graph. A system is re-creatable if all of its
derived files can be re-created identically. in terms of a derivation graph, re-creation is possible if '
each derivation step is known, the set of primitive files is known, and the primitive files have not
been changed since the system was first created.

<\

In Unix, creation is often accomplished using the Unix tool Make [Fekdman 79]. Make applies a
set of heuristics t0 a makefile that contains a list of explick commands to determine and run a set

e T T T

Sversion information, however, could be used 1o guide heuristics that identily candidates for delta compression.

%in practics, It is necessary 10 deal with things ke steps that read the system clock or that interact with the user. For
ourrent purposes such problems are ignored.

"

a"e s 5 A S

of invocations.!® Make is concerned with invocations, not with the more general concept of
derivation steps. In general, it is not possible to tell the complete set of input files and output files
of each derivation step of a system by looking only at the makefile; therefore, it is not possible to
determine the set of primitive files of a system. By convention, users normally include information
about these file sets in their makefiles, but there is no check to be sure that this information is
complete or even correct. The reason for this deficiency goes deeper than just the Make tool. In
Unix, when a tool is invoked, there is no way to tell what files are opened for input and/or output.
Such an inquiry is essential to guarantee re-creation but when arbitrary tools can be invoked
during derivation!?, this inquiry can only be implemented by making modifications to the Unix
kernel.

For re-creation, the set of primitive files must be determined, and each file in the set must be
checked to ensure that it has not been changed since initial creation. Unix provides some assis-
tance here in the form of a time stamp for each file that gives the time that each file was last
moditied. As long as the last modified time on a file is older than the creation time of the system,
then it would seem that it is a correct file. The problem occurs when the Unix move command,
mv, is used. This command moves a file between two directories and preserves its last modified
time. So when mv is used, the primitive file may not be correct and re-creation can not be
done.'2 Worse, there is a system call, utimes, that can be used to change arbitrarily the last
modified time.'3

The use of SCCS protects the user from changing old versions of a source file. This is a step
forward, although the problem is still present at a deeper level because the s-file itself is subject
to all the previous problems.

In a persistent object base, re-creation would be achieved by immutable objects and unique
object identifiers, such as those provided by the Cedar System Modeller [Lampson 83). All primi-
tive files and the full derivation graph would be stored as immutable objects whose content can-
not be changed by any user. Each object is assigned a unique identifier at creation in a way such
that no two objects ever will have the same unique identifier. The derivation graph would refer to
primitive objects by their unique identifier, not by their file name; so move and copy operations
would not confuse the identification of the primitive objects.

Keeping the information needed to re-create all the okd versions of all systems on rotating mag-
netic media is generally considered too expensive. Write-once laser disks are just starting to

Although not discussed here, Make also uses heuristics 10 avoid rerunning those derivaton steps whose inputs have
not changed since they were run last.

11Tools where the set of input and output files for an invocation cen be determined easily present no problem. The C
compiler, which can read arbitrary include files, involves moderate difficulty.

2 practice, it often looks as though re-creation happens comectly. Users frequently spend many confusing hours
when the re-created system is subtly different from the original system.

12Tool designers have been known 1o use this call constructively 1 fake Make into doing “the right thing”.

A 20 a0 “ata ata" pheate® e 2% a'%a’A%a"

Sty

1

DEPETR MEN AT AFENEYT UUS UL U W I\ ol P\ S\ R s |

become available [Fujitani 84]: They offer the ability to hold extensive historical information at
acceptable costs. When write-once laser disks are combined with the use of compressed
representations, there is no reason why all past versions of all source files cannot be kept avail-
able on-line [Katz 84).

3.4 Attributes

Unix provides a fixed set of attributes for each file as part of its directory entry. These attributes
include the name of the owner of the file, a set of file protection control bits, and times of file
creation, modification and use. These attributes are mostly set and used by the system, although
there are commands and system calls that permit the user to set and use them.

When additional attributes beyond those provided by Unix are needed, the user must find after-
native ways of representing them, gince there is no way o add new attributes to a directory. The
set of additional attributes that could be of use in an environment is unlimited, being determined
by the needs of a development effort and the tools it uses. A persistent object base must be able
to support arbitrary attributes. Some examples of additional attributes include the unique iden-
tifier for the file, a string attribute that gives the reason why the file was created, and a boolean
attribute that indicates whether the content of the file has been compressed.

Attributes can be used also to relate files. For example, the version graph can be represented by
each file having as an attribute a set of the unique identifiers of the files that are its immediate
version predecessors. Since the version graph is symmetrical, another attribute that is a set of
version successors couid be added also, but these two attributes contain redundant information.
To avoid the redundancy and to preserve the symmetry, a better way of representing the version
graph woulkd be with a version relationship that relates predecessors with successors but that is
not an attribute of either. So in addition to attributes, a persistent object base should support
arbitrary relationships. Other examples of relationships include the derivation graph, and a
relationship between C program files and the include files they reference.

In addition to files having attributes, a persistent object base should also permit relationships to
have attributes.'4 For example, the version relationship could have an attribute that says why a
successor version was produced from some predecessor version, and a derivation step within the
derivation relationship might have an attribute for the time at which & was run.

Typically, when tools are built on top of Unix that depend upon attributes and/or relationships,
then ad hoc encoding means are used. These means range from special purpose file encodings
such as the s-files of SCCS, through special purpose database systems such as that used in’
Gandalf [Gandalf 85], to general purpose database system such as that used in DSEE. Not only
is considerable effort wasted in building tools which each must do their own attribute and relation-
ship support, but even greater problems occur when 10018 that use different ad hoc schemes must

Y% oven makes sense © have relationships between relationships.

RIS

P T

be integrated. Consider, for example, two systems, each of which uses s own special ad hoc
scheme and where the information used partially overlaps so that redundant information must be
synchronized between the two different schemes. The net result is that integration is very dif-
ficult, it not impossible.

35 sﬁnchronlzatlon

When two or more users are working on the same system and therefore the same set of files,
some means of synchronizing that use is needed. When two people are editing the same source
file without synchronization, the changes made by one may overwrite the changes made be the
other without either being aware of the problem. In the absence of automated support, users
frequently do such synchronization by manual conventions. For example, a specific set of files
are agreed to be "controlled” by some specified user who may change any of the files while other
users may read but not modify the files. The weaknesses of this approach are that it is time
consuming, error-prone, and often overly restrictive in limiting modifications. Under Unix, the
SCCS tool provides support for synchronization at the level of each source file. SCCS has two
basic operations for synchronization: get a file for editing from the s-file; and merge the edited
file back into the s-file. Only one user may have a given s-file in the editing state, between a get
and a mexge. This is overly restrictive because multiple edits could be proceeding safely on
independently forked alternatives. The RCS tool solves this problem by permitting one edit to be
occurring on each alternative fork. Both SCCS and RCS require explicit extra action by the user
to get and mezge a file when editing . This is often enough of a burden to discourage users
from using either SCCS or RCS. The DSEE system provides the synchronization in an integrated
fashion that is less of a burden for the user and that is harder to subvert.

Another problem with SCCS and RCS is that the default mode of operation for get is to extract
the most recent version on the main version line. At first this seems like a desirable feature, since
most of the work on a system is with the most recent version. Problems can occur, however,
when multiple people are producing new versions of the primitive files of a system. When a user
changes some primitive files and then does a build based on most recent versions of all primitive
files, the resulting system will incorporate not only the user's changes but also possibly arbitrary
other changes made by other users to other primitive files. The net result is that the behavior ot a
most recently built system will often change over time in subtle ways that are not under the user’s
control. Normally, under Unix no derivation graph s recorded; thus it is difficult, if not impossible,
to figure out which set of primitive files have changed since the previous system build. Time
stamps are one clue to what has changed, but due to problems discussed earlier, they are not
always reliable. Recall that primitive files include not only source files that belong to the system
under development but aiso fibraries and tools that are part of Unix. Normally, Unix libraries and
tools are not version controlled; nevertheless, they are changed during periodic operating system
releases and by Unix system software maintainers at arbitrary times to fix perceived "bugs”.
These changes cause not only unpredictable behavioral changes in the current system buiids, but
can also destroy the ability to re-create previous system versions.

v 4 49 4

. e v -

a >

o

[4

a s 4 A

v a's Aa hiaat. Ba il atatetataly’ CaR At el el Wi Pah Wl tad vad tab g Rag ¥ @ CD U8 asp gt S0 e X R 220 02078, 2 0"t) 0"

A high quality programming environment must support synchronization that is simple for users,
place no unnecessary restrictions on simultaneous access, support a version control system for
both user and system files, record the full derivation graph, allow the user to control explicitly
which versions of primitive files to use, and support inquiry so that users can determine easily
which primitive files of a system have been changed. A persistent object base should provide the
basic support layer on which such environments can be built.

4 Weaknesses of Database Systems

This section considers five areas where database systems are inadequate for persistent object
bases: types, decentralization, time, distribution, and performance. Relational database systems
[Codd 70] will be used as examples. Other database systems will differ in their details from
relational systems but display essentially similar weaknesses.

Engineering databases, particularly those used for CAD/CAM, share many basic requirements
with programming environments. Many of the weaknesses that have been identified in these
applications [Hallmark 84, Hartzband 85] are similar to those discussed here.

Relational database systems are now just starting to be used within programming environments
for applications including source program tree representation, dynamic execution behavior, and
version and configuration control [Ceri 83, Snodgrass 84, Linton 84].

4.1 Types

Types In relational database systems are considered here from three perspectives: primitive
types, structural types, and abstract types.

. Relational database systems typically have a small predefined set of primitive types for

attributes. 'S This set is often quite constraining when used for programming environments. For
example, consider using a relation to represent the version graph.
Version : relation

old:integer, == 0ld version number
new:integer, -- new version number
why:string -« reason for change

A value for this relation might be as follows.

181 cdatabase systems, the term domain is used 1 refer ©© a set of values for some attribute. The term type is used
here insteed of domain 10 emphasize analogies with the type mechanisme of programming languages.

1

T

P

‘v.xaton

old |new| why
b 2 | "Added a new feature that peraits inverted 4input”

2 3 | "Fixed the bug introduced in v 2"

Here the why field is a string of arbitrary length. The only string type provided by many relational
systems is a fixed length string. The effect of varying length strings can be achieved, but only by
subverting the system.

Versionl : relation
old:integer, -=- 0ld version number
new:integer, -- new version number
count :integer, -~ string index
why:stzing(20) -- zeason for change
end

Versionl I

old | aew count | why

"Added a new feature

1 2 2 *that peraits ianverte"”
1 2 3 =d input "
2 3 1 *¥Fixed the bug dintrod-
2 3 2 "uwoed 4in v 2 "

Not only is the structure of the data obscured, but both space 1o store the data and time to access
Rt are degraded. This kind of subversion only gets worse when trying to represent more compiex
programming environment data such as program source and relocatable, documentation, and
graphics. Although all of these could be buiit up from the primitive types of a relational database
system, the effort is large and the representation would be nekther natural nor efficient.

Structurally, a relational database consists of a set of named relations. Consider, for example a
database with two relations.

' NG v J'.f-‘ AT AT A r..v-r A A AT LA L AT S AT L N N A

A S Ay 8

Vexsion : zelation
old:integer, == 0ld version number

new:integer, -- nev version number :
why:stxing -=- zeason for change .
end K

Source : relation
vexrsion:integer, version number
day:integer, == day created
month:integer, - month created by
year:integer -= yaar created .
end B

Al of the relationships between relations are expressed implicitly. Typically, two relations are
related by using the same type for some attribute in each so that they can be joined. For ex- .
ample, Version.old could be joined to Source.version. It is not the case, however, that if
two relations have attributes with the same types that it always makes sense to join them. For .
example, joining Version.old {0 Source.month is not a sensible operation. One way to)
introduce more structure is by stronger typing such as that provided by the Modula-2 type decla-
ration [Wirth 85]. .
type version type = integer; ’
type day_type = integer; J
type month type = integer; ,
type year_type = integer;

Version : relation r
old:version_type, -- 0ld version aumber o
new:version_type, -=- new version number |
why:string -- reason for change A

Source : zelation
version:version_ type,-- version number

day:day_type, == day created

month:month_type, -=- month created !

year:year_ type -= year created :
end .

Another structural approach is {0 use graphical entity-relationship diagrams [Chen 76).

13

S

- - e A

e b

o

old

source

I U LAY\

WLUNFIAS TRUT AT AT BCR W) U

Extended relational models are another way of introducing more structure. One such system is
RM/T [Codd 79]. In RM/T, system generated surrogate keys are attached to every tuple of every

relation so that no two are ever identical.

Source : relation
version:integer, --
day:integer,
month:integer,
year:integer

end

Version : relation
old:key[Souzce], -~
new:key[Source], --
why:stzing

end

W, y d
K5 u“.h LT

version anumber
day created
month created
year created

old version
new version

reason for change

Wi f st Y Ay

: i"‘;f‘; - .

!

W

e

14

RN AT, TR oty

ﬂﬁ e e el b o g B fh o o Lo S 5 0 2 0 AL 2.2 B R0 By R SR St g2t s (o g g) op N aig g oBE oFA Vit Bl ¢ F 2,9 (.05 1 4. 5.6 §. 85 €

A ¥ =

[Eource]

key |version | day |[sonth | year
#003 1 10 L 83
[#004 2 20 10 83
f005 3 4 3 | 1
[Vezsioa]
key old | new | why
#001 | #003 |#004 | "added a new feature ..."
#002 | #004 #0053 | "Pixed the bug ..."

The key attribute is automatically supplied and initialized by the system. Since joins now are
based on unique surrogate keys, structural relationships are specified fully. Surrogate keys are

closely related to the unique object identifiers discussed earlier and to the typed pointers of
Modula-2.

It surrogate keys are placed not only on tuples but on entire relations, then relations can be used
to relate other relations. For example, a directory tree like that of a file system can be
represented. First, a relation type for directories is introduced.
Type Directory = relation
name:string,

file:key
end

As an example, the following directory tree is used.

/Q_Development /V1/documentation
/Q_Development/V1/program
/Q_Development/V2/documentation
/Q_Development/V2/program

That tree Is represented by the following Instances of the Directoxy type.

#001 :Directory | #003 :Directory |
key asme file
*"Q_Developameat” #0066 | ~ya~ f00¢
#0058 | =v2~ f009

#006 :Directory | #009 :Directory |
key nase file key name £ile
#007]| "documeantation” s012 #010 | "documentation” f014
#008 | "Prograa” f013 #011 | "prograa” #015

The lack of abstract data types [Shaw 84] in relational database systems is perhaps the most
significant type weakness. All data in a relational database exists at a structural level. There is
no way to define a new abstract type in terms of Rs abstract properties and then define its
implementation in terms of existing types. Reconsidering an earlier example, varying length
strings could be defined as a new abstract type that used a variable number of fixed length
strings as Its representation. This kind of abstraction becomes even more important for complex
objects such as those that represent graphic images.

Abstract data types gain much of their power from considering not just data in isolation, but data
together with the set of operations. In relational database systems, the data specification written
in some schema language is separated from the operations as expressed in some query lan-

- guage. Not only are the specifications physically separate, but often they are expressed in an
incompatible language.

Another aspect ot abstract data types is that the impiementation can be changed without impact-
ing the users of the specification. Database systems normally provide users with a limited leve!l of
control over the way in which the data is represented. For example, many database systems
allow users t0 specify those places where redundant inverted indexes are to be created. When
the user needs a representation that is not supported by the system, the only altemative is to
modify the source code of the database system Rsel. Even in those rare cases where source
code is available, the complexity of most database systems makes this a formidable task. A
solution is to put more of the control for reprasentations in the hands of the user via an abstract
type mechanism.

A persistent object base system should provide a rich set of primitive types, enable expression of
rich structural relationships such as those of the extended relational models, and provide a full
abstract data type mechanism. There are obvious paraliels between the needed future direction
for database systems and the past evolution of type support within modemn programming lan-

L b 8 v 4

16

guages. Many of the same type features found in modem languages need to be brought into
database systems; however, database systems face special problems brought about by the per-
sistence of data that were not faced by the designers of programming languages.

4.2 Decentralization

Database systems typically have a single centralized schema that is maintained by a database
administrator, DBA. For programming environments, k must be possibie to define and control
data locally. This need is demonstrated below by several examples.

As an intial example, consider the set of documentation files in a system including help files, user
manuals, implementation descriptions, and even the source files of systems. These represent
online versions of information that each user would previously have had in hardcopy. One advan-
tage of hardcopy is that & is easy for each user 10 write in personal comments. The same
approach could be used online by letting each user make a copy of the document and edit in
personal comments, but k would be better 10 have a single copy of the document and let each
user be abie 1o have a separate "overiay” that contains personal comments. This kind of abiity is
becoming available though a class of environments called hypertext systems [Yankeiovich 85).
Consider the following simplified relation types.

type Document = relation
line numberz:integer,
line:string
end;

type Comments = relation
documant :key [Document),
line number:integer,
comment :stzing
end;

Considerable progress toward decentralization is already implickt in the use of type definitions and
surrogate keys. Type definitions permit muRiple instances. Surrogate keys enabie an object and
its attributes to be stored separately. This separation is important not only for local control but
also because it permits data, such as an instance of Commants, 10 be added to a preexisting data
structure, such as an instance of Documant, without modifying elther the type definition or con-
tents of that preexisting data structure. Not only must the database permit the right kind of
definitions, R also must permit the needed operations. As basic operations, each user must be
able to create locally an instance of Comments and to control the use of that instance. As a more
general operation, users should be able to define their own relation types for their own local use.
in many database systems, these abilties are centralized with the DBA. Making a user Qo
through a DBA for these kinds of operations ls not only bothersome but aiso logically
unnecessary.'®

“Anelogies exist in the file system area when users are foroed 10 go wough a centralized system administrator
heve struchures created or modified that should be under user contol.

T T

W W

O O A A s S

As a second example, consider what happens when a new tool is added to & programming
environment. This tool may need the ability to create and access new attributes and relationships
of existing objects. The need for local definition, instantiation, and control are similar fo those ot
the previous example. For tools, decentralization aiso can be an aid to integration. Since each
fool can manage locally the attributes and relationships for that tool, independent tools will not
place conflicting constraints on centralized data. Conflicts can be representational, such as mul-
tiple tools wanting to use word 23 of some control block, or naming, such as multiple tools want-
ing to use the attribute name Next. Particularly severe conflicts can arise when two versions of a
single tool are being supported simultaneously. For example, both versions might have a Sext
attribute, but give R slightly different semantics. By giving each version s own instance of the
Next aftribute, multiple versions can coexist without interterence.'’

As a final example, consider integrating two previously independent databases. Such integration
could occur when two isolated programming environment systems are connected via a network
and a transparent network file system is installed. When centralized schema are used, integra-
tion will require merging these two schema into a single new schema. Conflicts are virtually
certain to occur, forcing either massive recoding or a less transparent integration in which the two
independent schema continue to exist.

For a persistent object base. decentralization of definition, instantiation, and control is essential.
This implies that there will not be a database administrator doing all data definition. Another
implication is that traditional kinds of normalization that are based on a single centralized schema
cannot be done. Since normalization is a method of removing redundancy and since controlled
redundancy can be used to improve the engineering of software systems, full normalization may
not only be limited but also undesirable.

4.3 Time

The basic relational data model views the database as having values that vary over time. Every
attribute is considered to be variable and only its current value is available. As was previously
discussed, programming environments must provide a history mechanism to record source ver-
sions and to support re-creation.

In many simple database systems that are used 10 support programming environment tools, the
only way 10 preserve history is by making a complete copy of the entire database. In more
powerful database systems, transaction joumnals are used to preserve history. A similar capability
is provided in file systems by periodic backup of all the files on a system. All of these approaches
have a common weakness: To go back in time, it is necessary to manually substitute a previous
version of the data for the current version. This substitution can be elther physical or logical. Ina

7Local attribute instances of course do not soive all integration problems. Mechanisms, such as those in [Garlan 86),
are needed for integrating tools that have logically related attributes whare setting the atwribute of ane ool should modify
the value of sttributes of other wols.

18

aTa s A S d R A S G NPt AN A w & LA

physical substitution, the current version is copied 1o a safe place and then the old version is
brought back in the place of the new version. For logical substitution, the new version Is left in
place, but operations are logically changed to operate on the reconstituted old version.

For a persistent object base, the ability to record previous states and to change back easily and
transparently to an arbitrary previous state is essential. To capture this ability cleanly and safely
requires more than just the addition of attributes that can take on time values. A persistent object
base must include time as an integral part of its undertying formal semantic model [Clitford 83].

Work on temporal database systems [Snodgrass 86] shows that time can be modeled with two
dimensions whose axes are transaction time and real time. The transaction time axis measures
the actual state of a system over time. By backing up along the transaction time axis to some
previous time, the system state is logically retumed to what it was at that previous time. By
backing up along the real time axis, the system state is logically returned to the state of reality at
that previous time (as determinec by our best current knowledge). Transaction and real times will
differ when either there is delay between the time at which an event occurs and the time at which
i s first entered into the database or when some event is incorrectly entered and later corrected.
Programming environments are uniike conventional database applications because the reality
that is being modeled is data within the database itself. This implies that for programming en-
vironments transaction time is identical to real time. Suppose, however, that the concept of exact
modeling of reality is replaced by the concept of exactly correct program behavior. Now forward
progress of some program under development along the transaction axis represents increased
(or modified) functionality, while forward progress along the comrectness axis represents an in-
crease in the number of bugs fixed.

4.4 Distribution

Most currently available database systems require that all data be kept within a single machine.
Future programming environments will be based on multiple machines connected via many kinds
of networks. Although considerable work is now being done on distributed database systems,
current systems are still rather limited [Ceri 84). Two aspects of distribution are considered: how
data is distributed among multiple machines and how multiple users on different machines can
share the same data.

The goal of data distribution is to place data physically 8o that Rk is available easily and Quickly to
its users while satisfying the hardware size constraints. The simplest way to distribute a relational
database Is to place different relation instances on different machines. The placement can be
static, determined when the instance is created, or dynamic, changeable at any time. Indepen-
dently, the placement can be manual, under the control of the user, or automatic, under the
control of the system.

A more complex distribution would place ditferent parts of the same relation on different
machines. For example, consider the version graph relation. Accesses 1o that relation will tend
fo be to tuples for recent versions. Older tuples can be placed on remote, slower, and/or larger

at. at et ab. gt

P

ho g 3

»
D)

physical devices of the system.'®

When two people are using the same data, then in general no one place is best for both. A
solution is to permit separate copies of the data to exist at locations that are good for each user.
When the users are reading the data and neither is modifying it, then permitting multiple copies is
easier. A special case of read-only data is immutable objects. Many network file systems are
now providing caching, a dynamic automatic mechanism for transparently creating and managing
multiple copies of data [Schroeder 85, Morris 86].

Not all data in a programming environment can be immutable. At least some data must be
mutable for progress to be made. A simple mechanism for dealing with mutable data in the
presence of multiple users is to use a central server. A server is a specific machine that controls
write access to data.!® The server ensures that only one user is writing the same data at the
same time. Before a user can modify data, a lock is set on the server so that other users cannot
modify that same data.

Servers limit effective distribution. The problem can be reduced by either minimizing the fre-
quency with which a user interacts with the server or by modifying data in ways that do not
require the use of a central server.

To understand how to minimize server interaction, it is instructive to consider how multiple users
working on the same system interact when using a programming environment that provides no
synchronization for data modification. In this case, the users often invent manual methods for
synchronization. Other than failures that occur when someone forgets the state of the manually
set locks, such methods work just fine. An important distinguishing characteristic of these manual
methods is the frequency of the synchronization operations. While common automated systems
often operate with a frequency of many synchronization operations per second [Ousterhout 85],
manual methods may have a frequency of only a few operations per day. By implementing
analogues of these manual methods, server interaction rates can be lowered. As an example,
consider the directory tree of a network file system. Every time a new file name is created, a
synchronization operation is needed. Most users on Unix systems are creating and destroying
files at a high rate. To lower the rate involves completely rethinking the role of global name
spaces in programming environments.2°

As an example of how data can be modified without involving a server, consider the version
graph relation.

%This includes migrating old tuples 10 magnetic tape.
940 practice, there can be multipie servers as ong as each data item is handied by exactly one server.

Names in Unix serve two independent purposes, connecting uses 10 their definiions and communicating information
between users. Uses can be connected 1 definitions by using unique identifiers instsad of names. Each unique identifier
may stil have a name, but that name is used for local display purposes only; the connection is made via the unique
identifier. A global name then is needed only in those relatively less frequent cases where information is passed between
users. A single giobal name may be communicated for an entire system that intermally contains thousands of local unique
identifiers.

o s e

A s s a2 o

e Y K 59 a0 2"} Y8 L' oth 2t otk g W EN I T RNEFrF AN N T AT OYyOoYoOY Y Ty Ry <

Version : relation
old:key([Souzce]l,-- old version
new:key[Source], -~ new version

why:string -~ reason for change
end

Suppose that two users each want to create a successor of some existing version. Each will
create a new source object and add a new tuple for it to the Version relation. There is no basic
conflict between these additions. Since the tuples of a relation are an unordered set, the order of
the additions will not affect the final value of the relation.

Since a network imposes finite delays?', time within a network is relativistic [Lamport 78). In
relativistic time, there is no system-wide absolute clock. Each machine within the network is
assumed to have its own clock that progresses at its own rate. in such a system, there is no total
ordering of events. Consider again the two users, A and B, each of which has a machine within
the same network, both trying to create a successor of the same existing version. To a it may
seem as though the new A tuple appears before the new B tuple, while to B the order appears to
be the B tuple followed by the A tuple.22

Now suppose that each new version is to be given the next new integer version number. This
can only be done by having a single server that assigns those numbers. Many version manage-
ment systems have a similar problem. When several alternative versions are present, one of
them is designated as the “primary" version. A central server is needed to control which new
version is to be the primary version.

For a persistent object base, automatic dynamic placement and caching of relations and parts of
relations is needed. Various methods must be used to avoid high interaction rates with central
servers.

4.5 Performance

The performance of database systems is tuned to access patterns that may be quite ditferent
from those expected in programming environments. Performance is considered here in terms of
what is accessed and who Is accessing it. A thorough understanding of the performance issues
of using databases for programming environments can occur only after many more experiments
are caried out and much more analysis is done. Based on what is still very limited experience,
this discussion speculates on areas where performance problems seem most likely to occur.

Relational database systems typically are tuned to emphasize the performance of operations that
deal with entire relations, such as join and projection. In a programming environment, operations

1These delays cen be quite long when lots of data is Fansmittad over a dial-up phone line or when some link in the
network is broken.

8, diferent approach that avoids a single central server for versions is given in [Eoklund 85).

21

‘e 82 &°2 A" U

..

% A

P s 2 3 8 4 3

(d

Saf it el ta Yap tag v + Vop ok Wap o R AR R IR R O UN vay, Sal "2l sal st tal ¢ Yot tal, bt el Yl tad "at "a "

" o T A A L A e

that deal only with a single tuple from each of many relations may be more frequent. In program-
ming environments, access patterns that traverse trees or directed graphs are common. Such
traversals must extract a single tuple, from the relation that represents the tree or graph, at each
step. Relational database systems typically assume that all tuples of a relation are equally likely
to be accessed. In the version relation, for example, tuples for more recent versions are more
likely to be accessed. Graph transitive closure operations are common in programming environ-
ments. For example, a query might be to determine all versions that are direct or indirect
predecessors of some given version. Database systems are not normally tuned to make tran-
sitive closure efficient. Furthermore, relationally complete query languages cannot in general
even express transitive closure.

Many database systems are designed mainly to interact with people. In a programming environ-
ment, most of the use of the data will be by programs. Most database query languages are
interpreted, not compiled. While users may accept small delays due to interpretation, the heavy
use of data accessing programs may produce unacceptable performance degradation in pro-
gramming environments. Of special performance significance is the use of surrogate keys.
These keys serve exactly the same role as pointers do in most programs: They are used 1o build
linked list structures such as trees and graphs. The efficiency of the pointer dereference opera-
tion is known to be a major factor in determining the execution speed of most system programs.
Unless surrogate keys can be implemented with an efficiency approaching pointers, then rela-
tional databases may prove to be an unacceptable basis for programming environments.23

5 Conclusions

This paper has examined from several perspectives the weaknesses of file systems and
database systems as a basis for persistent object bases of programming environments. Neither

_current file systems nor current data base systems are adequate to support a first class persistent

object base. In many areas, however, current research and development is progressing toward
systems that correct at least some of the weaknesses.

This paper provides designers and evaluators of persistent object bases with a checklist of issues
to be considered and a list of problem areas where further work is needed. However, the real
work of building a persistent object base may be less concemed with finding novel solutions to
specific problems and more concerned with effectively integrating current technology.

6 Acknowledgements

Many of the ideas presented here originated in discussions with Joseph Newcomer and Ellen

B4 possible answer is 1o use memory addresses as the representation that programs 8e9. Considerable enginesring
is obviously needed.

22

L R o A R

........

TRV TSR TETTUR R R T b b b ke dh o A e oo B e L2 A Ale AR Ao Alo BRo al. Al ol

Borison. 1 would ke to thank Haavard Eidnes, Purvis Jackson, Richard Snodgrass, Donald
Stone, and Chuck Weinstock for providing many useful comments on earier drafts of this paper.

7 References

[Apolio 86}
[Borison 86]

[Ceri 83)

[Ceri 84]

[Chen 76)

[CLF 85)

[Cilifford 83]

[Codd 70]

{Codd 79]

{DoD 85]

[Eckiund 85)

[ESPRIT 85]

[Feldman 79)

[Fujtani 84]

Apolio Computer. Using the Open System Tool Kit to Extend the Streams
Facility. To appear April 1986.

Ellen Borison. A Model of Software Manufacture. International Workshop on
Advanced Programming Environments. Trondheim, Norway. June 1986.

S. Ceri and S. Crepi-Reghizzi. Relational Databases in the Design of Program
Construction Systems. SIGPLAN Notices, Volume 18, Number 11, November
1983.

S. Ceri and G. Pelagatti. Distributed Databases Principles and Systems.
McGraw-Hill, 1984,

Peter Pin-Shan Chen. The Entity-Relationship Model - Toward a Unified View
of Data. ACM Transactions on Database Systems, Volume 1, Number 1,
March 1976.

CLF Project. Introduction to the CLF Environment. USC Information Sciences
Institute, 1985.

James Cltfiord and David S. Warren. Formal Semantics for Time in
Databases. ACM Transactions on Database Systems, Volume 8, Number 2,
June 1983.

E. F. Codd. A Relational Model of Data for Large Shared Data Banks.
Communications of the ACM, Volume 13, Number 6, June 1970.

E. F. Codd. Extending the Database Relational Mode! o Capture More Mean-
ing. ACM Transactions on Database Systems, Volume 4, Number 4, Decem-
ber 1979.

Draft Military Standard Common APSE Interface Set (CAIS). Proposed MIL-
STD-CAIS. NTIS AD 157-587. January 31, 1985.

Earl F. Ecklund, Jr,, Darryn M. Price, Rick Krull, and Denise J. Eckiund.
Federations: Scheme Management in Locally Distributed Databases. Tech-
nical Report CR-85-39, Computer Research Laboratory, Tektronix
Laboratories, November 1985.

ESPRIT. PCTE, A Basis for a Portable Common Tool Environment, Func-
tional Specifications. Third edition, Bull, The General Electric Company p.\.c.,
ICL International Computer Limited, Nixdorf Computer AG, Olivetti SPA,
Siemens AG, 1985.

S. I. Feidman. Make - A Program for Maintaining Computer Programs.
Software Practice and Experience, Apil 1979.

Lamy Fujitani. Laser Optical Disks: The Coming Revolution in On-Line
Storage. Communications of the ACM, Volume 27, Number 6, June 1984.

1

-

LTI YCR YON WL VO SO U U U PO LR M

[Gandalf 85]

[Garlan 86}

[Hallmark 84)

[Hartzband 85]

[Hatch 85)

[Katz 84]

[Lamport 78]

[Lampson 83]

{Leach 83]

[Leblang 85]

[Linton 84)

[Morris 86]

[Osterweil 83]

[Ousterhout 85]

O 4% gon oV pagd ok Aatata'

Special Issue on the Gandalf Project. The Joumal of Systems and Software,
Volume 5, Number 2, May 1985.

David Garlan. Views for Tools in Integrated Environments. International
.I;Vorkshop on Advanced Programming Environments. Trondheim, Norway.
une 1986.

G. Hallmark and R. A. Lorie. Toward VLS| Design Systems Using Relational
Databases. IEEE Computer Conference. Spring 1984.

David J. Hartzband and Fred J. Maryanski. Enhancing Knowledge Repesen-

tation in Engineering Databases. Computer, Volume 18, Number 9, Septem-
ber 1985.

Mark J. Hatch, Michael Katz, and Jim Rees. AT&T's RFS and Sun's NFS, A
Comparison of Heterogeneous Distributed File Systems. UnixWorld, Volume
2, Number 11, December 1985.

Randy H. Katz and Tobin J. Lehman. Database Support for Versions and Al-
temnatives of Large Design Files. IEEE Transactions on Software Engineering,
Volume 10, Number 2, March 1984.

Leslie Lamport. Time, Clocks, and the Ordering of Events in a Distributed Sys-
tem. Communications of the ACM, Volume 21, Number 7, July 1978.

Butler W. Lampson and Eric E. Schmidt. Organizing Software in a Distributed
Environment. Proceedings of the SIGPLAN ‘83 Symposium on Programming
Language Issues in Software Systems. SIGPLAN Notices, Volume 18, Num-
ber 6, June 1983.

P. Leach, P. Levine, B. Dorous, J. Hamilton, D. Nelson, and B. Stumpf. The
Architecture of an Integrated Local Network. /EEE Journal on Selected Areas
in Communications, November 1983.

David B. Leblang, Robert P. Chase, Jr., and Gordon D. McLean, Jr. The
DOMAIN Software Engineering Environment for Large Scale Software
Development Efforts. Proceedings of the 1st International Conference on
Computer Workstations. |EEE, November 1985,

Mark A. Linton. Implementing Relationa! Views of Programs. Proceedings of
the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environments. SIGPLAN Notices, Volume 19, Number
5, May 1984. Software Engineering Notes, Volume 9, Number 3, May 1984.

James H. Morris, Mahadev Satyanarayanan, Michael H. Conner, John
H. Howard, David S. H. Rosenthal, and F. Donelson Smith. Andrew: A Dis-
tributed Personal Computing Environment. Communications of the ACM,
Volume 29, Number 3, March 1986.

Leon Osterweil and Geoffrey Clemm. The Toolpack/IST Approach to Exten-
sibility in Software Environments. Ada Software Tools Interfaces: Bath
Workshop Proceedings. Springer-Verlag, Lecture Notes in Computer Science,
Number 180, 1983.

John K. Ousterhout, Herve Da Costa, David Harrison, John A. Kunze, Mike
Kupfer, and James G. Thompson. A Trace-Driven Analysis of the UNIX
4.2BSD File System. Technical Report UCB/CSD 85/230, University of Cali-
fornia, Berkeley, April 1985.

24

L

W A AL
5

4

R

YLy

C LS

B XA

. .
e
o NP

. " .
H .
@

Y RS
PP LI LD AT N

@ sy

‘v
A

i
L ATV,

‘1
R

.....
.......

[

ta Ap Fg teT 8o 2% ag' 83t 407 fal Bat Sat 2% $aV 44V S0 B 0@ 870 4t ' 4 s ' tta d's f'a 80 0% 8% T2V 40 a0 a0 At et el otal Vet Vel 0.8 tal val ol cud o v

[Ritchie 74] D. M. Ritchie and K. Thompson. The Unix Time-Sharing System.
Communications of the ACM, Volume 17, Number 7, July 1974.

[Rochkind 75] M. J. Rochkind. The Source Code Control System. /EEE Transactions on
Software Engineering, Volume 1, Number 4, December 1975.

[Sandberg 85] R. Sandberg. The Desigh and Implementation of the Sun Network File Sys-
’ tem. Proceedings Usenix, June 1985.

[Schroeder 85] Michael D. Schroeder, David K. Gifford, and Roger M. Needham. A Caching
File System for a Programmer’'s Workstation. Proceedings of the 10th ACM
Symposium on Operating System Principles. Operating System Review,
Volume 19, Number 5, December 1985.

[Shaw 84] Mary Shaw. Abstraction Techniques in Modern Programming Languages.
IEEE Software, Volume 1, Number 4, October 1984.

[Snodgrass 84] Richard Snodgrass. Monitoring in a Software Development Environment: A
Relational Approach. Proceedings of the ACM SIGSOFT/SIGPLAN Software
Engineering Sympcsium on Practical Software Development Environments.
SIGPLAN Notices, Volume 19, Number 5, May 1984. Software Engineering
Notes, Volume 9, Number 3, May 1984.

[Snodgrass 86] Richard Snodgrass and lisoo Ahn. Temporal Databases. Computer, To ap-
pear 1986.

[Taylor 86] Richard N. Taylor, Lori Clarke, Leon J. Osterweil, Richard W. Selby, Jack
C. Wileden, Alex Wolf, and Michal Young. Arcadia: A Software Development
Environment Research Project. IEEE Transactions on Software Engineering,
To appear 1986.

[Tichy 82] Walter F. Tichy. Design, Implementation, and Evaluation of a Revision Control
System. Proceedings of the 6th International Conference on Software
Engineering. |EEE, Tokyo. September 1982.

[Welch 84) Terry A. Welkch. A Technique for High-Performance Data Compression.
Computer, Volume 17, Number 6, June 1984.
[S
[Wirth 85] Niklaus Wirth. Programming in Modula-2. Third Correcled Edition. Springer-
Verlag, 1985.

[Yankelovich 85] Nicole Yankelovich, Norman Meyrowitz,and Andries van Dam. Reading and
Wiriting the Electronic Book. Computer, Volume 18, Number 10, October
1985.

[AT

R
R L P R T RE Iy) e ™ A A"’ t P u g . - ~ -~ LR PO -
e e Tyt e T T e AT A A Y TRV \\.“\' 5, P _\ RS -,_’\' X

SECURITY CLASSIFICATION OF THIS PAGE

A

REPORT DOCUMENTATION PAGE .
1. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS .
UNLIMITED, UNCLASSIFIED NONE o
2e. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT :
N/A UNCLASSIFIED, UNLIMITED, DTIC, NTIS 3
. DECLASSIFICATION/OOWNGRADING SCHEDULE o
R7& :
’ 4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S) .
‘ CMU/SEI-86-TM-8 ESD-TR-86-215 L
‘ 6a. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7. NAME OF MONITORING ORGANIZATION :
(1f applicable) W
| SOFTWARE ENGINEERING INST. SEI JPO X
| SEI y
6c. ADORESS (City, State and Z1P Code) 7b. ADORESS (City. State and ZIP Code! ‘:
‘ CARENGIE-MELLON UNIVERSITY ESD/XRS1 >
PITTSBURGH, PA 15213 ° HANSCOM AIR FORCE BASE A
HANSCOM, MA 01731 .-
8s. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMB80L 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ::
ORGANIZATION (1f applicadie) C‘ -
SEI_JPO ESD/XRS1 F19628 85 0003 A
8¢c. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS. .
CARNEGIE-MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNIT
PITTSBURGH’ PA 15213 ELEMENT NO. NO. NO. NO E
63752F N/A N/A N/A -
11. TITLE (Include Security Classification) N
TOWARD A PERSISTENT OBJECT BASE Ny
12. PERSONAL AUTHORI(S) ;
JOHN NESTOR
13a. TYPE OF REPORT 13b. TIME COVERED 14. OATE OF REPORAT (Yr, Mo., Day) 15. PAGE COUNT ! i
FINAL FROM s TO e JULY 86 28 3
16. SUPPLEMENTARY NOTATION l‘:
N/A t:
"-
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if nccessary and identify by block number; g
FIELD GROUP SUB. GR. r
L4
4
r
19. ABSTRACT (Continue on reverse if necessary and identify by block number o
f
TO BETTER UNDERSTAND THE NEEDS OF FUTURE PROGRAMMING ENVIRONMETNS, TWQ CURRENT "
TECHNOLOGIES THAT SUPPORT PERSISTENT DATA IN PROGRAMMING ENVIRONMENTS ARE CONSIDERED: :
FILE SYSTEMS AND DATA BASE SYSTEMS. THIS PAPER PRESENTS A SET OF WEAKNESSES PRESENT ‘:
IN THESE CURRENT TECHNOLOGIES. THESE WEAKNESSES CAN BE VIEWED AS A CHECKLIST OF ::
ISSUES TO BE CONSIDERED WHEN EVALUATING OR DESIGNING PROGRAMMING ENVIRONMENTS. A
”
’
LN
o,
~‘\
¢
20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION !
)
UNCLASSIFIED/UNLIMITED (X same as ApT [oTic usems (Y UNCLASSIFIED, UNLIMITED, DTIC, NTIS 2
22a. NAME OF RESPONSIBLE INDIVIDUAL 226 TELEPHONE NUMBE R 22c¢ OFFICE SYMBO L ‘::
tInctude \rea Code: .
KARL H. SHINGLER 4125687630 SEI JPO ?
DO FORM 1473, 83 APR EDITION OF 1 JAN 73 1S OBSOLETE 4 _
SECURITY CLASSIFICATION ~% TriS Pav: E
e L S A A R L SN I ST

ity WYy l.q.\‘;‘l'. h, I‘Q‘.‘q

